JEE Advanced/ IIT-JEE

PROBLEM

For a twice differentiable function f(x), g(x) is defined as $g(x) = (f'(x)^2 + f''(x)) f(x)$ on [a, e]. If for a < b < c < d < e, f(a) = 0, f(b) = 2, f(c) = -1, f(d) = 2,f(e) = 0 then find the minimum number of zeros of g(x).

(2006 - 6M)

SOLUTION

$$g(x) = (f'(x))^2 + f''(x)f(x) = \frac{d}{dx}(f(x)f'(x))$$

Let $h(x) = f(x)f'(x)$
Then, $f(x) = 0$ has four roots namely a, α, β, e
where $b < \alpha < c$ and $c < \beta < d$.
And $f'(x) = 0$ at three points k_1, k_2, k_3
where $a < k_1 < \alpha, \alpha < k_2 < \beta, \beta < k_3 < e$
[\therefore Between any two roots of a polynomial function
 $f(x) = 0$ there lies atleast one root of $f'(x) = 0$]
 \therefore There are atleast 7 roots of $f(x) \cdot f'(x) = 0$
 \Rightarrow There are atleast 6 roots of $\frac{d}{dx}(f(x)f'(x)) = 0$

i.e. of g(x) = 0